Overexpression of Exosomal Cardioprotective miRNAs Mitigates Hypoxia-Induced H9c2 Cells Apoptosis

نویسندگان

  • Jinwei Zhang
  • Jideng Ma
  • Keren Long
  • Wanling Qiu
  • Yujie Wang
  • Zihui Hu
  • Can Liu
  • Yi Luo
  • Anan Jiang
  • Long Jin
  • Qianzi Tang
  • Xun Wang
  • Xuewei Li
  • Mingzhou Li
چکیده

Recent evidence suggests that hypoxia caused by acute myocardial infarction can induce cardiomyocyte apoptosis. Exosomes are signalling mediators that contribute to intercellular communication by transporting cytosolic components including miRNAs, mRNAs, and proteins. However, the systemic regulation and function of exosomal miRNAs in hypoxic cardiomyocytes are currently not well understood. Here, we used small RNA sequencing to investigate the effects of hypoxia stress on miRNAome of rat cardiomyoblast cells (H9c2) and corresponding exosomes. We identified 92 and 62 miRNAs in cells and exosomes, respectively, that were differentially expressed between hypoxia and normoxia. Hypoxia strongly modulated expression of hypoxia-associated miRNAs in H9c2 cells, and altered the miRNAome of H9c2 cells-derived exosomes. Functional enrichment analysis revealed extensive roles of differentially expressed exosomal miRNAs in the HIF-1 signalling pathway and in apoptosis-related pathways including the TNF, MAPK, and mTOR pathways. Furthermore, gain- and loss-of-function analysis demonstrated potential anti-apoptotic effects of the hypoxia-induced exosomal miRNAs, including miR-21-5p, miR-378-3p, miR-152-3p, and let-7i-5p; luciferase reporter assay confirmed that Atg12 and Faslg are targets of miR-152-3p and let-7i-5p, respectively. To summarize, this study revealed that hypoxia-induced exosomes derived from H9c2 cells loaded cardioprotective miRNAs, which mitigate hypoxia-induced H9c2 cells apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-19a protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway

miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischem...

متن کامل

Knockdown of MicroRNA-122 Protects H9c2 Cardiomyocytes from Hypoxia-Induced Apoptosis and Promotes Autophagy

BACKGROUND Acute myocardial infarction (AMI) is a severe disease causing heart failure and sudden death. Studies indicate that microRNAs (miRNAs) are involved in the pathophysiology of AMI. In the present study, we carefully explored the effects of miR-122 on myocardial hypoxia injury and its possible underlying mechanism. MATERIAL AND METHODS miR-122 expression was analyzed in H9c2 cardiomyocy...

متن کامل

TanshinoneIIA and Cryptotanshinone Protect against Hypoxia-Induced Mitochondrial Apoptosis in H9c2 Cells

Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have n...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

17β-Estradiol and/or Estrogen Receptor β Attenuate the Autophagic and Apoptotic Effects Induced by Prolonged Hypoxia Through HIF-1α-Mediated BNIP3 and IGFBP-3 Signaling Blockage.

BACKGROUND/AIMS The risk of heart disease is higher in males than in females. However, this advantage of females declines with increasing age, presumably a consequence of decreased estrogen secretion and malfunctioning of the estrogen receptor. We previously demonstrated that 17β-estradiol (E2) prevents cardiomyocyte hypertrophy, autophagy and apoptosis via estrogen receptor α (ERα), but the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017